Thursday, March 30, 2017

Gerak melingkar

Gerak melingkar

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Gerak melingkar.
Hasil gambar untuk gerak melingkar
Gerak melingkar (atau gerak sirkulerbahasa Inggriscircular motion) adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran [1].
Ciri-ciri gerak melingkar beraturan:
  • 1. Besar kelajuan linearnya tetap
  • 2. Besar kecepatan sudutnya tetap
  • 3. Besar percepatan sentripetalnya tetap
  • 4. Lintasannya berupa lingkaran

Besaran gerak melingkar[sunting | sunting sumber]

Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah  dan  atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan  dan .
Besaran gerak lurus dan melingkar
Gerak lurusGerak melingkar
BesaranSatuan (SI)Satuan (SI)
posisi mrad
kecepatan m/srad/s
percepatan m/s2rad/s2
--s
--m

Turunan dan integral[sunting | sunting sumber]

Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.

Hubungan antar besaran sudut dan tangensial[sunting | sunting sumber]

Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui  khusus untuk komponen tangensial, yaitu
Perhatikan bahwa di sini digunakan  yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu
untuk suatu selang waktu kecil atau sudut yang sempit.

Jenis gerak melingkar[sunting | sunting sumber]

Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya , yaitu:
  • gerak melingkar beraturan, dan
  • gerak melingkar berubah beraturan.

Gerak melingkar beraturan[sunting | sunting sumber]

"Gerak Melingkar Beraturan" (GMB) adalah gerak melingkar dengan besar kecepatan sudut  tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial  dengan jari-jari lintasan 
Arah kecepatan linier  dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial . Tetapnya nilai kecepatan  akibat konsekuensi dar tetapnya nilai . Selain itu terdapat pula percepatan radial  yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.
Bila  adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran , maka dapat pula dituliskan
Kinematika gerak melingkar beraturan adalah
dengan  adalah sudut yang dilalui pada suatu saat  adalah sudut mula-mula dan  adalah kecepatan sudut (yang tetap nilainya).

Gerak melingkar berubah beraturan[sunting | sunting sumber]

"Gerak Melingkar Berubah Beraturan" (GMBB) adalah gerak melingkar dengan percepatan sudut  tetap. Dalam gerak ini terdapat percepatan tangensial  (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).
Kinematika GMBB adalah
dengan  adalah percepatan sudut yang bernilai tetap dan  adalah kecepatan sudut mula-mula.

Persamaan parametrik[sunting | sunting sumber]

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:
  • titik awal gerakan dilakukan 
  • kecepatan sudut putaran  (yang berarti suatu GMB)
  • pusat lingkaran 
untuk kemudian dibuat persamaannya [2].
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan  yang diperoleh melalui:
Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu
dengan dua konstanta  dan  yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai , maka dapat ditentukan nilai  dan :
Perlu diketahui bahwa sebenarnya
karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular[sunting | sunting sumber]

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

Kecepatan tangensial dan kecepatan sudut[sunting | sunting sumber]

Kecepatan linier total dapat diperoleh melalui
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
dengan
diperoleh
sehingga

Percepatan tangensial dan kecepatan sudut[sunting | sunting sumber]

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
dengan
diperoleh
sehingga

Kecepatan sudut tidak tetap[sunting | sunting sumber]

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa
dengan  percepatan sudut dan  kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.
Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
di mana  adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara  dan  melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

Kecepatan sudut[sunting | sunting sumber]

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh
dengan
Dapat dibuktikan bahwa
sama dengan kasus pada GMB.

Gerak berubah beraturan[sunting | sunting sumber]

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.
Gerak berubah beraturan
KecepatanGLBBGMB
Besarberubahtetap
Arahtetapberubah

No comments:

Post a Comment